If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64r^2-16=0
a = 64; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·64·(-16)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*64}=\frac{-64}{128} =-1/2 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*64}=\frac{64}{128} =1/2 $
| 15-42y=180 | | 15+42y=180 | | 9x^2–100=0 | | 2y-39=58 | | 42-15y=180 | | 19+1x=32+10x | | 2x/5+3+-4x/5=1/5 | | 42+15y=180 | | 4-5x=86+4x | | 6(x+4)=3(2×-6) | | 25x+17=5x-13 | | 5(c+1)=2(c+3) | | 8(2x-3)-6x.X=3 | | 347.50=100+45x | | 1/4x-3=3/4x | | y+12=48 | | 2x-3(3-4x)=4(x-4)-43 | | 90x+5=45 | | (4)x=1024 | | -1/2(6-3x)=-6 | | x2+18x+49=0 | | 900=10+x | | 7(y−5)+14=7y−21 | | 15=x2+12 | | D=56.5x43 | | 8-8=8+6=(6^8x) | | 8-8-8+6=(6^8x) | | 3+9n=91 | | 8-8|8+6=(6^8x) | | (4b+1)(3)= | | 1x/7+1x/6=39 | | x-2/5+3=12 |